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Abstract. The accurate solution of optimal control problems is crucial in many areas of
engineering and applied science. For systems which are described by a nonlinear set of
differential-algebraic equations, these problems have been shown to often contain multiple local
minima. Methods exist which attempt to determine the global solution of these formulations.
These algorithms are stochastic in nature and can still get trapped in local minima. There is
currently no deterministic method which can solve, to global optimality, the nonlinear optimal
control problem.

In this paper a deterministic global optimization approach based on a branch and bound
framework is introduced to address the nonlinear optimal control problem to global optimality.
Only mild conditions on the differentiability of the dynamic system are required. The implementa-
tion of the approach is discussed and computational studies are presented for four control
problems which exhibit multiple local minima.
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1. Introduction

The rigorous solution of optimal control problems is of primary importance in many
areas of engineering and applied science. The applications of these problems range
from the determination of rocket trajectories, to the control of batch chemical
systems. In every case, the objective is the generation of an optimal control input to
reach a minimum or maximum of a performance measure subject to the dynamics of
the system under study. In many problems, especially in chemical engineering, the
dynamics of the system can be complex. In most cases the systems are nonlinear in
nature and described by ODEs, or by a differential-algebraic set of equations. These
factors lead to several difficulties, among which the problem of multiple local
minima has received very little attention. Luus and Cormack (1972) showed that a
rather simple problem, the temperature control of a batch reactor, can exhibit
multiple local solutions. Examples also exist in which over 100 local minima have
been identified (see for instance Luus et al., 1992).

The methods most often employed in the literature to address this problem use
control parameterization. This approach converts the infinite dimensional problem
into a finite one in which the optimization is performed over a set parameters used
to describe the time varying nature of the control input. The methods used for the
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discretization vary from simple piecewise constant functions to complicated
polynomials of finite elements. Different approaches have been taken to account for
the dynamic nature of the formulation. First, from a deterministic perspective, two
types of methods have been employed, a sequential and a simultaneous. A
simultaneous approach involves the discretization of not only the control, but also
the state profiles. This leads to a completely algebraic formulation which may be
addressed using known local NLP methods, or rigorous optimization approaches
(e.g., the aBB, Adjiman et al., 1998a,b). Drawbacks to this approach include a large
increase in the size of the variable space and the number of both linear and nonlinear
constraints. Also, the type of discretization used for the state profiles can have a
dramatic effect on the solution due to the error introduced in the approximation.

Villadsen and Michelsen (1978) provided a wide range of polynomial approxi-
mation methods which have been used to solve problems of various complexity.
Vlassenbroeck (1988) used a Chebyshev series expansion to solve various optimal
control problems. Neuman and Sen (1973) presented a suboptimal control algorithm
for systems with state constraints using cubic splines. Tsang et al. (1975) discussed
a method based on collocation with simple polynomials in time. Biegler (1984)
described a method using collocation at the roots of orthogonal polynomials using
Lagrange polynomials. A successive quadratic programming (SQP) method was
used to solve the resulting NLP. Tieu et al. (1995) added to this approach by
including the time endpoint as one of the collocation points. This allowed for the
more accurate solution of problems with constraints on the final state values. Renfro
et al. (1987) applied a slight departure to the collocation approach. Instead of using
the same type of parameterization for both the state and control, they used a global
spline approximation for the state, and a piecewise constant profile for the control.
Cuthrell and Biegler (1987) extended the orthogonal collocation approach using a
series of finite elements. In each element the profiles were approximated once again
using Lagrange polynomials. Wang and Chiou (1995) also considered a collocation
approach on finite elements, but included the element endpoints as collocation points
to better enforce the continuity between elements. Logsdon and Biegler (1989)
considered the properties of fully implicit Runge-Kutta algorithm to develop
appropriate error and stability constraints. They also showed the applicability of the
approach to optimal control problems with state constraints of order greater than
one. Smith and Pantelides (1996) proposed a global optimization algorithm using
the simultaneous approach. They applied a symbolic reformulation and spatial
branch and bound algorithm to the solution of a reactor synthesis problem using
orthogonal collocation to describe the dynamic of the PFR.

The second type of method, referred to as a sequential approach, used an
integration routine to solve for the dynamics of the system. At each iteration of the
NLP solver, the DAE system is integrated, and some form of gradient evaluation is
performed. The size of the optimization space is not increased nor is any
approximation error introduced, but the computational effort resulting from the
numerous integrations may be large. Sargent and Pollard (1970) discretized the
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max mincontrol into two values, u and u , and then determined the optimal switching
times between these two control states for the control of plate distillation columns.
Litt and Delcommune (1984) compared the application of three different types of
splines for the control parameterization. Sargent and Sullivan (1978) described a
package which used piecewise constant control profiles and can handle path and
final time constraints on the state and the control variables. They also compared the
effect various integration routines have on the convergence of the optimization
method and the computational effort required. Goh and Teo (1988) presented a
unified method also using piecewise linear control to solve problems involving
ordinary differential equations with general constraints on the state and control
values. Chen and Hwang (1990) extended this approach to differential-algebraic
equation systems. Vassiliadis et al. (1994a,b) discussed a similar approach which
uses piecewise Lagrange polynomials on variable size elements to parameterize the
control for systems with and without path constraints. The approach was applied to
optimal control problems which have multiple stages of operation.

All of the aforementioned approaches suffer from the same major drawback, the
ability to converge only to a local solution. Attempts to overcome this difficulty
have been made. Rosen and Luus (1992) used line search techniques to determine a
series of starting points for their NLP solver. Their approach seems to converge to
the global solution 75% of the time for simple problems, but fails more often as the
number of local minima increase. Strekalovsky and Vasiliev (1997) presented a
search method for the global optimization of maximization problems with convex
objectives. The global maximum is obtained by enumeration of the possible
maxima. Convergence is guaranteed, but only for a very limited class of problems.

A second class of solution methods was proposed that are probabilistic in nature.
They are designed to increase the chances of finding the global solution of the
problem. Luus and Bojkov (1994) applied dynamic programming methods (Luus,
1990) to solve the bifunctional catalyst problem (known to contain a large number
of local minima). The authors show that, on average, 75% of the time convergence
to the global minima is reached. The probability of obtaining the global solution is
related to various parameters in the method (Bojokov and Luus, 1993). The
approach was also applied to piecewise linear control profiles (Luus, 1993), final
state constrained systems (Luu and Rosen, 1991), and inequality path constrained
systems (Mekarapiruk and Luus, 1997). Dadebo and Mcauley (1995) applied this
technique to solving constrained chemical engineering systems. Luus and Hennessy
(1999) applied a direct search technique (Luus and Jaakola, 1973) to the optimi-
zation of fed-batch fermentors. Wang and Chiou (1997) used an algorithm based on
differential evolution. A piecewise control parameterization with variable switching
times was used, while the differential equations were solved using a modified
collocation approach. The results of the differential evolution approach were then
used as starting points for a standard SQP algorithm to refine the control policy.
Carrasco and Banga (1997) presented an approach which used a stochastic
optimization method to solve the formulation. Control parameterization was
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accomplished using piecewise linear functions and the differential-algebraic system
was solved using an integration routine. The solution obtained from the stochastic
algorithm could then be used as the starting point for a deterministic method
(Carrasco and Banga, 1998). Ali et al. (1997) tested the application of different
stochastic algorithms to different types of problems. One of the problems studied is
the optimal control of a chemical reactor using a piecewise constant temperature
profile. Banga and Seider (1996) applied a random search technique to the solution
of control and design problems which arise in the optimization of chemical
processes. This algorithm was also applied to state constrained optimal and model-
predictive control (Banga et al., 1998), and the optimization of batch and semi-
continuous bioprocesses (Banga et al., 1997). For further discussion about recent
advances in optimal control theory, algorithms, and applications, the reader is
directed to the book of Hager and Pardalos (1998). For a background on the
theoretical, algorithmic, applications and test problems of deterministic global
optimization, the reader is directed to the recent book of Floudas (2000) and the
recent handbook of test problems by Floudas et al. (1999).

All of the attempts to find the global solution in the general case are probabilistic
in nature. Even though the likelihood of determining the global minimum is
increased, they can still be trapped in a local solution. Hence, a deterministic
approach which can guarantee convergence to the global solution of nonlinear
optimal control problems is a major challenge. In this study, a method using the
sequential approach will be presented. The approach is based on the branch and
bound algorithm aBB (Androulakis et al., 1995; Adjiman et al., 1996, 1998a,b)
originally developed for algebraic problems. In Section 2, the formulation of the
optimization problem and methods of control parameterization will be discussed.
Section 3 will deal with the proposed approach. The extensions and theorems which
allow the application to these dynamic problems will be outlined, and an illustrative
example demonstrating the key points will be discussed. Finally, in Section 4 a
series of example problems will be presented to describe both the theoretical and
computational aspects of the proposed approach.

2. Problem formulation

The general formulation for the problems studied is:

min f(x, v)
x,v,u(t )

~s.t. z 5 g(z, v, u, t) j [ Jj

0 5 h(z, v, u, t)

z(t ) 5 z t [ [t , t ]0 0 0 f
(1)

L Uu < u < u
c (x) 1 z (t ) 5 0 m [ M m [ Pm,m m m
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d(x, v) < 0
L U L Ux < x < x , v < v < v

where z belongs to the set Z of state variables, J is the set of states whose
derivatives appear explicitly in the system, M is the set of states which appear in
point constraints defined at time points of the set P, u is the time varying set of
control variables, v are time invariant parameters which appear in the dynamic
system, and x are algebraic variables which do not appear in the dynamic system.

The following conditions on the functions in (1) must also hold:
1. f(x, v), c(x), d(x, v) are twice continuously differentiable functions in the

L U L Uregion defined by x [ [x , x ] and v [ [v , v ].
2. The differential-algebraic system is at most index 1.
3. g(z, v, u, t) and h(z, v, u, t) are continuous and twice differentiable with respect

to the states, z, the controls, u, and the parameters, v, in the region defined by
L U L U L Uz [ [z , z ], u [ [u , u ], and v [ [v , v ].

In order to convert the infinite dimensional problem given by (1) into a finite one,
control parameterization is used. The control variables are written as a function of
the parameters, v, and time, t,

u(t) 5 8(v, t) . (2)

One common control parameterization is a piecewise constant profile. In the case of
a single control variable, this takes the form

u(t) 5 v for t < t , t . (3)i i i11

Another control parameterization scheme is a piecewise linear profile:

v 2 vi11 i]]]u(t) 5 v 1 (t 2 t ) for t < t , t . (4)i i i i11t 2 ti11 i

The control variables, u, are then treated as state variables, and the optimization
only takes place over the time invariant variables x and v. The problem reduces to:

min f(x, v)
x,v

~s.t. z 5 g(z, v, t) j [ Jj

0 5 h(z, v, t)

z(t ) 5 z t [ [t , t ] (5)0 0 0 f

c (x) 1 z (t ) 5 0 m [ M m [ Pm,m m m

d(x, v) < 0
L U L Ux < x < x , v < v < v

A numerical integration routine is used to generate the necessary function and
gradient evaluations for the dynamic system in the course of the optimization
algorithm (Schweiger and Floudas, 1998b).
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3. Global optimization approach

Within this section, the basic concepts of the aBB approach will be presented along
with the theorems which allow for its extension to dynamic systems of equations.
An illustrative example will be provided to show the key points of the approach.

3.1. OVERVIEW OF THE aBB

The aBB global optimization method (Androulakis et al., 1995; Adjiman et al.,
1996; Adjiman and Floudas, 1996; Adjiman et al., 1998a,b) guarantees convergence
to the global minimum for general twice continuously differentiable constrained and
unconstrained NLPs. This is accomplished through the generation of a non-
decreasing sequence of lower bounds and a non-increasing sequence of updated
upper bounds on the global solution. Finite e-convergence to the global minimum is
achieved through the successive subdivision of the region at each level in the branch
and bound tree. The sequence of upper bounds on the global solution is obtained by
solving, to local optimality, the full nonconvex problem from different starting
points. The lower bounds are generated by solving a convex relaxation which
underestimates the original problem.

There are three main components in the aBB algorithm which affect the
performance of the method. These include: (1) the generation of the underestimating
the formulation which will allow for the determination of a valid lower bound on the
global solution, (2) the method for determining the variable to branch the region on
at each level of the tree, and (3) the approaches used to determine appropriate
variable bounds at each level. Each component has a distinct effect on the
convergence properties of the algorithm and will be discussed.

3.2. UNDERESTIMATING FORMULATION

Within the formulation given by (5), there are two different types of terms, an
algebraic part, and a dynamic part. The algebraic part consists of the functions,
f(x, v), c(x), and d(x, v). These are underestimated using the techniques described by
Adjiman and Floudas (1996); Adjiman et al. (1998a,b).

A challenging question is how to deal with the dynamic part of the formulation.
First, consider the differential-algebraic system of equations given in the formulation
as a simple input–output map. The input represents the values of the parameters, v,
while the output corresponds to the values of the states along time, z(t).

~z 5 g(z, v, t) j [ Jj

v → 0 5 h(z, v, t) → z(t) (6)

z (t ) 5 z t [ [t , t ]j 0 0 0 f
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Pontryagin (1962) presented two theorems concerning the continuity and differen-
tiability of this input–output map with respect to the parameters, v. The theorems
are derived and proven for a system of ODEs. It is possible to convert the DAE
system in (6) into a set of ODEs either by explicitly solving 0 5 h(z, v, t) for the
algebraic variables, z , i [⁄ J, and substituting into g(z, v, t) or through onei

differentiation of h(z, v, t) since the system is of most order one (Brenan et al.,
1996).

Given the system

~z 5 g(z, v, t) , (7)

the assumption that the right-hand side of (7), g(z, v, t), and the partial derivatives,

­
] g(z, v, t) (8)
­z

are defined and are continuous is some domain G of the space of variables t, z, and
v, we have:

THEOREM 1 (Pontryagin (1962), page 170). If (t , z , v ) is an arbitrary point of0 0 0

the domain G, there exist positive numbers r and r such that for:

uv 2 v u , r0

the solution

z 5 c(t, u )

of (7) which satisfies the initial condition

c(t , v) 5 z0 0

is defined on the interval ut 2 t u , r and is a continuous function of all the0

variables, t and v, on which it depends.

THEOREM 2 (Pontryagin (1962), page 173). Let the partial derivatives

­
]e(z, v, t) 5 g(z, v, t)
­v

exist and be continuous in the domain G. Let (t , z , v ) be some point of G. Then,0 0 0

there exist positive numbers r9 and r9 such that for ut 2 t u , r9, uv 2 v u , r9 the0 0

solution c(t, v) of (7) which satisfies the initial condition:

c(t , v) 5 z ,0 0

has continuous partial derivatives

­c(t, v)
]]] .

­v

COROLLARY 1 (Pontryagin (1962), page 177). If all the partial derivatives of
g(z, v, t) with respect to the variables z and v up to the mth order inclusive exist and
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are continuous, then the functions c(t, v) also have continuous partial derivatives
with respect to the parameters, v, up to the mth order inclusive.

Given the conditions on the differential-algebraic system presented in Section 2,
and the aforementioned theorems, the values of the states, z, at given time t can bem

defined as a set of twice continuously differentiable functions of the parameters, v:

z(t ) 5 ^̂̂ (t , v) ; ^̂̂ (v) . (9)m m m

Substituting this function into (5) results in:

min f(x, v)
x,v

s.t. c (x) 1 ^ (v) 5 0 m [ M m [ Pm,m m,m
(10)

d(x, v) < 0
L U L Ux < x < x , v < v < v

where ^ is the function which describes the value of state z at time point t .m,m m m

The derivatives of this function are the values of the sensitivities of state z withm

respect to the parameters, v, at the given time point t . These sensitivities arem

determined by simultaneously integrating a set of linear equations with the initial
system (Caracotsios and Stewart, 1985; Vassiliadis et al., 1994a; Brenan et al.,
1996). The set of equations, for this system, take the form of:

­g ­g
] ]I 0j3j j3k ~­z ­z­z ­vS]D ]5 S D1 (11)
­h ­h­v ­v3 4 3 4 3 4] ]0 0h3j h3k ­z ­v

where j is the number of states with explicit derivatives, k are the number of states
without explicit derivatives, and h is size of the vector of equations h. Therefore the
derivatives of the function ^ with respect to v are defined as:m,m

­^ ­zm,m m]] ]5 (t ) . (12)m­v ­v

A numerical integration routine is used to generate the necessary function and
gradient evaluations for the dynamic system in the course of the optimization
algorithm (Schweiger and Floudas, 1998a). The underestimator of this function is
generated by adding a quadratic term in v:

U L+ (v) 5 ^ (v) 1O b (v 2 v )(v 2 v ) (13)^ m,m m,m,i i i i im,m
i[I

where I is the set of v variables, and + represents the underestimator of the^

function ^. A simplification of (13) has all the b equal ;i [ I. This reducesm,m,i

(13) to

U L+ (v) 5 ^ (v) 1 b O (v 2 v )(v 2 v ) . (14)^ m,m m,m i i i im,m
i[I
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The value of the b parameter needs to be large enough to ensure convexity, but not
too large as to overly underestimate the term. The convex relation of formulation
(10) including the underestimators for the algebraic functions is written as:

min + (x, v)fx,v

1 1s.t. + (x) 1 + (v) < 0 m [ M m [ Pc ^m,m m,m

2 2+ (x) 1 + (v) < 0 m [ M m [ P (15)c ^m,m m,m

+ (x, v) < 0d

L U L Ux < x < x , v < v < v
1 2where + is the underestimator of the function c , + is the underestimatorc m,m cm,m m,m

1 2of the function 2c and + , + , and + are all similarly defined. It ism,m ^ ^ dm,m m,m

necessary to split the equality point constraints into a positively and a negatively
signed inequality, each being underestimated separately. Depending on the nature
of the problem and the constraint it may only be necessary to include half of the
set.

3.2.1. Determination of b values
The b values are calculated using the Hessian matrix of the function ^ (v). Thism,m

matrix is generated using the second-order sensitivity of the state z with respect tom

the parameters v,

2
­ zm]]* ; (t ) . (16)m,m 2 m
­v

Equations (13) and (14) refer to the addition of a diagonal shift matrix to the
Hessian matrix of the function,

* 5 * 1 2D , (17)+ m,m m,mm,m

where the matrix D is composed of diagonal elements b . Using a uniformm,m m,m,i

diagonal shift method, that there is where all elements of the D matrix are equal, the
value of b needed to make * positive semi-definitive is shown to be (Maranas and+

Floudas, 1994),

1 min]b > 2 min l (v)m,m m,mv2
(18)

b > 0m,m

minwhere l is the minimum eigenvalue of the Hessian matrix * . The difficultym,m m,m

arises from the fact that * ca not be written as an analytical function of v. Them,m

elements of the matrix, however, can be determined through an integration of the
augmented system at given values of v. As a result of this, three different methods
for the determination of b values have been developed.
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Constant or semi-constant b values
In this approach, the values which will be used for the b parameters are preselected.
These may either be constant throughout the branch and bound tree, or can be a
function of the tree level. A functional form used which varies the value of b by
tree level is:

U L 1 / nv 2 vi i]]]]]b 5 b P (19)H S DJ0 U,orig L,orig
i[I v 2 vi i

U Lwhere I is the set of all branching variables, v and v are the bounds of the ii i
U,orig L,origvariable in the current region, and v , and v are the original bounds on thei i

variable at the root node of the branch and bound tree. The product given in (19)
varies with the tree level and asymptotically approaches 0. The value of n
determines the rate at which b will approach 0, starting from b . This approach is0

the easiest, with the least computational effort required. But the drawback is that no
second-order information, which could be made available, is being used and the
validity of the underestimator is not known. This method is only possible when a
uniform diagonal shift matrix is being used.

Sampling approach
The values of the elements of * are determinable at given values of the parameters
v. Therefore, in each region, a number of points are selected to evaluate the Hessian
matrix and calculate the eigenvalues of these matrices. The minimum of these
eigenvalues is then used to calculate the value of b. The number of points sampled
and the sampling method are both parameters in this approach. In all cases a
uniformly random sample is generated. The number of points used in the sample has
both an affect on the validity of the underestimator and the time required to generate
it. The more points used, the better the approximation, but the more time required.
The size of the sampled set needs to be large enough to generate a valid value for b,
but not too large so as to require a substantial computational expense. As with the
constant approach, this method is only possible when a uniform diagonal shift
matrix is employed.

Sampling with interval calculation
In this approach, the values of each element of * are also determined at given
values of the parameters, but the eigenvalues of these Hessian matrices are not
directly determined. Instead, an interval Hessian matrix is generated by determining
the minimum and maximum of every element over the sampled points. A valid
lower bound on the minimum eigenvalue of this matrix can then be determined
using methods presented by Adjiman and Floudas (1966); Adjiman et al. (1998b).
Methods have been developed using either a uniform or nonuniform diagonal shift
matrix.
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3.2.2. Illustrative example
In order to illustrate the above concepts, consider the system:

3~z 5 u 2 z

z(t ) 5 9 t [ [0, 1]0

25 < u < 5

For the sake of simplicity, a constant control, u, over the whole time horizon will be
used. Consider the value of the state, z, at t 5 1, which is an implicit function of the
control, ^(u). This is plotted in Figure 1. Notice the continuity and nonconvex form
of this function.

The first-order sensitivity of the state with respect to the control, ­z /­u, is
determined by integrating an additional equation with the one given above. Using
the expression given by (11), the sensitivity equation is

~­z ­z2] ]5 23z 1 1 . (20)
­u ­u

2 2The second-order sensitivity, ­ z /­u , for the sake of simplicity, is calculated using
a finite difference approximation. These sensitivities are plotted in Figure 2.

The minimum of the second-order sensitivity is 20.2214. Using the expression
given by (18) a b value of 0.1107 is needed to generate a convex relaxation of this
function. That relaxation takes the form,

U L+ (u) 5 ^(u) 1 0.1107(u 2 u)(u 2 u) (21)^

The original function and the underestimator given by (21) are plotted in Figure 3.

Figure 1. Value of the state at final time versus the control for the illustrative example.
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Figure 2. Values of the first- and second-order sensitivities at final time versus the control
for the illustrative example.

3.3. DETERMINATION OF A BRANCHING VARIABLE

At each level of the tree, it is necessary to determine which variable will be used to
bisect the region. This branching variable is chosen based upon its contribution to
the quality of the convex underestimator.

i* 5 arg max d (22)i
i

where i* is the index of the branching variable, and d is the overall contributioni

calculated for a given variable i from the set [v, x]. The overall contribution is made
up of two components,

d ad 5 d 1 d (23)i i i

dwhere d is the contribution calculated from the dynamic part of the formulation,i
aand d is from the algebraic part. These components can be determined using twoi

Figure 3. Value of the underestimation function versus the control for the illustrative
example.



DETERMINISTIC GLOBAL OPTIMIZATION 109

methods. Each method attempts to determine the overall effect a given variable has
on the difference between the original formulation and the convex underestimation.

Method 1: The measure is based on the difference between the original function
and the underestimator taken at the solution to the lower bounding problem. For the
dynamic part of the formulation, this measure is calculated by

d U sol L sold 5 O O b (v 2 v )(v 2 v ) (24)i m,m,i i i i i
m[M m [P

solwhere v is the solution to the lower bounding problem. For the algebraic part, this
measure is calculated as:

a sol sol sol sold 5 O f (x , v ) 2 + (x , v ) (25)i k fk
k[Ki

where K is the set of algebraic functions, f (x, v), in which the given variable i fromi k

the set [x, v] participates and + (x, v) represents the underestimator of thisfk

function.

Method 2: The measure is based on the maximum separation distance between the
original function and the underestimator. For the dynamic part, the measure is
calculated by

1d U L 2]d 5 O O b (v 2 v ) . (26)i m,m,i i i4m[M m [P

For the algebraic part,

ad 5 O max [ f (x, v) 2 + (x, v)] . (27)i k fkx,v
k[Ki

3.4. VARIABLE BOUND UPDATING

At each iteration it is possible to update the bounds on some or all of the algebraic
variables by solving a series of optimization problems,

min /max w
x,v x,v

1 1s.t. + (x) 1 + (v) < 0c ^m,m m,m
2 2+ (x) 1 + (v) < 0c ^m,m m,mL, U,* *w /w 5 (28)j j + (x, v) < 0d

+ (x, v) < UBf

L Ux < x < x
L U v < v < v

where w ; [x, v], the set of all algebraic variables, and j [ J where J is the set of
variables selected for updating. + (x, v) is the relaxed objective function, and UB isf

the current best upper bound on the global solution.
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3.5. ALGORITHMIC PROCEDURE

The steps of the detailed algorithmic approach are as follows.
Step 1. Initialize the problem:

rel abs1. Set the relative, e , or the absolute, e convergence tolerance.
2. Set the iteration counter, iter, to zero.
3. If a sampling method is being used to calculate the b values, set the number of

initialpoints to use at the first iteration, p , and the minimum number at each
everysubsequent iteration, p .

Step 2. Calculate initial b values:
1. Setup the augmented DAE system with the first-order sensitivities.

initial2. Integrate, with sensitivity evaluations, the system at p randomly selected
values for the v variables.

3. Save the values of the second-order sensitivities (the sensitivities of the
sensitivity variables) at the necessary time points. These will be used at
subsequent iterations.

4. Using the selected method, calculate the values of the b parameters.
Step 3. Determine initial lower and upper bounds on the global solution:

1. Solve the convex relaxation from a randomly chosen starting point.
2. Save the solutions and all the variable values:

1,1 1,1 1,1 1,1obj* → obj → LB x* → x v* → v b → b .

3. Using the lower bounding solution as a starting point, solve the original
nonconvex problem to local optimality to determine an upper bound (UB) on
the global solution.

4. Save the solution and all the variable values:

UB UB UBobj* → obj x* → x v* → v .

Step 4. Check for convergence
abs relif UB 2 LB < e or u(UB 2 LB) /UBu < e then terminate with the global

solution:

glo UB glo UB glo UBobj 5 obj x 5 x v 5 v

otherwise iter 5 iter 1 1.
Step 5. Update Lower Bound:

1. Select the next region to be explored as the one with the lowest solution to the
relaxed problem.

2. The region is removed from the list of stored regions, and the solution
becomes the new lower bound

ier,rLB 5min obj
iter,r

Step 6. Update variable bounds:
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1. Select a given number of algebraic variables, v or x, to have their bounds
updated.

2. Solve (28) for each of the selected variables using the current value of the
upper bound, UB.

Step 7. Branch the region:
1. Select the variable to branch the region on using the criteria shown in Section

3.3.
2. Branch the region into two (r 5 1, 2) by bisecting on the selected variable.

Step 8. Update b values in each region:
1. Search and list of saved integration points to determine the number which

currentbelong to the given region, p .
current every2. If p , p select additional points randomly to make up the difference.

3. Save the additional integration results.
4. Calculate the necessary values of the b parameters.
5. The calculated value of every b parameter must be less than or equal to the

value used at the parent node of the region.
Step 9. Determine lower and upper bounds in each region:

1. Solve the convex relaxation from a randomly chosen starting point.
2. Save the solution if it is less than the current upper bound (UB):

lowerIf obj , UB then
iter,r iter,r iter,r iter,robj* → obj x* → x v* → v b → b .

Otherwise, if the solution is greater than the upper bound, or if there is no
feasible solution, remove the region from consideration and go to Step 4.

3. Solve the upper problem in this region using the solution of the lower problem
as a starting point.

4. If the solution is less than the current upper bound, then update the bound

upper upper UB UBif obj , UB then obj → UB x* → x v* → v .

5. Go to Step 4.
This algorithmic procedure has been implemented in an extensive C program with
an intuitive front end parser. All the necessary differentiations and generation of
additional constraints are performed automatically. A link to the MINOPT optimi-
zation program (Schweiger and Floudas, 1998a) is used to perform the local
optimizations and integrations. MINOPT itself has links to various local solvers. For
these problems, SNOPT (Gill et al., 1997) was used as the local optimization
routine, with the integrations being performed by DASOLV (Jarvis and Pantelides,
1992).

4. Computational studies

In order to illustrate the theoretical and computational aspects of the proposed
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approach, four example problems will be presented. All example problems were
solved on an HP J2240, using one CPU. Explicit formulations for each case study
are provided in the handbook of test problems by Floudas et al. (1999).

4.1. ILLUSTRATIVE EXAMPLE – CONTINUED

This problem involves the same dynamic system used to illustrate the underestima-
tion technique in Section 3.2.2.

2min 2z(t )fu

3~s.t. z 5 u 2 z
(29)

z(t ) 5 9 t [ [0, 1]0

25 < u < 5

For the sake of simplicity, a constant control profile will be used over the entire time
range. The problem needs to be reformulated such that the objective becomes an
algebraic function. This is accomplished by introducing a point constraint at the final
time, t , which relates the state, z, to an algebraic variable, x.f

2min 2x
u,x

3~s.t. z 5 u 2 z

z(t ) 5 9 t [ [0, 1] (30)0

x 2 z(t ) 5 0f

25 < u < 5

In order to underestimate this problem, the equality point constraint needs to be split
into two opposite signed inequalities. The final formulation becomes:

2min 2x
ux

3~s.t. z 5 u 2 z

z(t ) 5 9 t [ [0, 1]0
(31)

x 2 z(t ) < 0f

2x 1 z(t ) < 0f

25 < u < 5

This problem has two local solutions as shown in Table 1, one at each bound of
the control variable.

In this formulation, not only will the dynamic system need to be underestimated,
but also the objective function. The objective function is concave, and will be

L Uunderestimated using a line segment from x to x . The full relaxed problem is:
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Table 1. Local solutions for the illustrative example. Frequency
refers to the percentage of starting points resulting in the given
solution (determined using 1000 random starting points)

Obj. u x Frequency

22.9246 5 1.7101 59.5%
22.7902 25 21.6704 40.5%

U 2 L 2(x ) 2 (x )L 2 L]]]]min 2 (x ) 1 (x 2 x )F GU Lux x 2 x
3~s.t. z 5 u 2 z

z(t ) 5 9 t [ [0, 1]0
(32)

2 U Lx 2 z(t ) 1 b (u 2 u)(u 2 u) < 0f

1 U L
2x 1 z(t ) 1 b (u 2 u)(u 2 u) < 0f

25 < u < 5 212 < x < 9

1The minimum value of b in the full region u [ [25, 5] was shown to be 0.1107 in
2Section 3.2.2. Using the same method, the minimum value of b required is 0.1450.

This problem was solved using both methods for calculating b values. The results
are shown in Table 2. The values used for the constant b method are those given
above. In the sampled case 100 points were used initially and at least 20 points at
each other iteration. Since there is only one variable which participates in the
dynamic system, there is no difference between the direct sampled approach, and the
sampled approach with interval analysis. Branching was performed on both x and u
using the first method described in Section 3.3 with a relative convergence tolerance
of 0.1%. Two different CPU times are reported, the overall solution time, and the
time required to perform the integrations to calculate the b values (this is included
in the overall time).

The sampled approach has the advantage that at each iteration the value of b is
updated. This is evident in the reduction of the required number of iterations. At the
same time though, additional effort is required to perform the necessary integrations
to update the values. The problem was also solved using bounds updating at each
iteration. Table 3 shows results updating and branching on different sets of
variables. Also results are shown with and without the use of the convexified

Table 2. Global solution results for the illustrative example using different methods to calculate
the b values

b Calculation method Iterations Total CPU sec. Integration CPU sec.

Constant 22 8.96 –
Sampled 17 7.59 1.00
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Table 3. Global solution results for the illustrative example using different branching and variable
bounds updating sets

Branching Bounds updating Obj. constraint Iter. CPU sec. CPU sec / iter.

x, u x, u Yes 7 10.81 1.5
x, u x Yes 8 9.00 1.2
u x Yes 6 7.36 1.2
x, u x, u No 7 7.99 1.1
x, u x No 8 6.64 0.8
u x No 6 4.60 0.8

objective function as a constraint in the bounds updating formulation. In each case,
the first branching method with constant b values and a relative tolerance of 0.1%
were used.

From the results it is clear that for this problem, the addition of the convexified
objective function constraint does not reduce the number of iterations required to
solve the problem. In addition it makes the bounds updating problems more difficult
to solve, thus leading to a higher overall computational effort. Also, the best
approach was to branch on the control variable, u, and update the bounds on x.
Updating the bounds on the control variable, u, does nothing more than increase the
computational effort required to solve the problem. If branching is performed on u
and bounds updates on x, using a sampled method to calculate the value of b (100
points initially, and at least 20 points at each iteration), the global solution is
obtained in 4 iterations and 4.32 CPU sec. Convergence to the solution is achieved
with the difference between the upper and lower bounds being less than the

26optimality tolerance of the local solver, 1 3 10 .

4.2. OIL SHALE PYROLYSIS

This problem involves the determination of the optimal temperature profile in a PFR
reactor. The reaction system under study is given by:

k 1

A → A1 2

k2

A → A2 3

k 3

A 1 A → A 1 A1 2 2 2

k 4

A 1 A → A 1 A1 2 3 2

k 5

A 1 A → A 1 A1 2 4 2

Only components A and A are included in the model. This example was studied1 2

by Luus (1990), Rosen and Luus (1992) and Carrasco and Banga (1997). The
objective is to maximize the production of A :2
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max z (t )2 fu

~s.t. z 5 2k z 2 (k 1 k 1 k 1 5)z z1 1 1 3 4 1 2

~z 5 k z 2 k z 1 k z z2 1 1 2 2 3 1 2
(33)

2b /RiF]]Gk 5 a exp i 5 1, . . . , 5i i u
z 5 [1, 0] t [ [0, t ]0 f

698.15 < u < 748.15

where R is the ideal gas constant, and the parameters a and b in the rate expressioni i

are defined in Table 4. The control is rescaled between 0 and 1,

¯u 5 698.15 1 50u (34)

and parameterized using a piecewise constant profile on 10 equally spaced elements.
In the original problem, the final time is variable. For this example, we will consider
the final time to be fixed at 10. The scaled, parameterized, and reformulated problem
becomes:

min 2x
v,x

~s.t. z 5 2k z 2 (k 1 k 1 k 1 5)z z1 1 1 3 4 1 2

~z 5 k z 2 k z 1 k z z2 1 1 2 2 3 1 2

2b /RiF]]]]Gk 5 a exp i 5 1, . . . , 5i i ¯698.15 1 50u
ˆ ˆū 2 v 5 0 t < t , t (35)i i i11

x 2 z (t ) < 02 f

z 5 [1, 0] t [ [0, 10]0

t̂ 5 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

0 < v < 1

Notice that only one inequality point constraint is required. Since the objective is to
minimize the negative of the variable x, only the upper relaxed constraint will be
active at the solution. This formulation has eight known local solutions. The best

Table 4. Data for the oil shale
pyrolysis example

i ln a b /Ri i

1 8.86 10215.4
2 24.25 18820.5
3 23.67 17008.9
4 18.75 14190.8
5 20.70 15599.8
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Table 5. Local solutions for the oil shale pyrolysis example. The frequency was found using 1000
random starting points

Obj. v v v v v v v v v v Freq.1 2 3 4 5 6 7 8 9 10

20.35343 0 0 0 0.3464 1.00 0.0723 0 0 0 0 39.7%
20.35327 0 0 0 0 0.1104 1.00 0.2346 0 0 0 41.8%
20.35261 0.1105 0 0.1455 1.00 0.2649 0 0 0 0 0 6.6%
20.35175 0 0 0 0 0 0.0538 1.00 0.2331 0 0 9.6%
20.35134 0.3409 0.2738 1.00 0 0 0 0 0 0 0 0.8%

five are listed in Table 5. The global solution is not the most prevalent solution and
is found less than 40% of the time. Additionally, each of the local solutions has a
completely different control profile.

This example was solved with updating different numbers of control parameter
variables. In each case, the necessary b values were calculated using the sampling
approach with 100 initial points and at least 10 points at each other iteration. The
first branching method was used, the objective constraint was included in all bounds

24updating problems, and an absolute convergence tolerance of 1 3 10 was used.
The results are presented in Table 6.

These results show how much improvement can be achieved by updating bounds
on the control parameters at each iteration. Even though the CPU time per iteration
has nearly tripled, the number of iterations required to achieve convergence is
greatly decreased. Notice how much of the computational effort, over 50%, is
needed to determine valid b values. More efficient second-order calculations would
lead to a great reduction in the required computational effort. It is important to note,
that even though this problem has many local solutions, the upper bound identified
at the root node of the branch and bound tree, in every case, was in fact the global
solution. The rest of the time was spend proving global optimality.

When the computational effort required to determine b values is removed from
the problem, the results are much different. Table 7 shows the results using a

23constant value of b of 8.0 3 10 . The algorithmic parameters are the same as the
previous results. In this case, the reduction in the number of required iterations to
reach convergence is not enough to offset the extra effort needed to solve the
bounds updating problem.

Table 6. Global solution results for the oil shale pyrolysis example updating different numbers of
variables

Variables updated Iterations Total CPU sec. Integrations CPU sec. CPU sec / iter.

none 353 13,051 11,988 37
5 157 10,782 6,697 69
all 87 7,408 3,777 85
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Table 7. Global solution results for the oil shale pyrolysis example updating different numbers of
variables using a constant b value

Variables updated Iterations CPU sec. CPU sec / iter.

none 473 1,209 2.6
2 351 4,721 13.4
5 276 5,253 19.0
all 219 6,045 27.6

4.3. SINGULAR CONTROL PROBLEM

This example represents a nonlinear singular control problem and appears in Luus
(1990) and Rosen and Luus (1992). The problem formulation is:

tf
2 2 2 2min E [z 1 z 1 0.0005(z 1 16t 2 8 2 0.1z u ) ] dt1 2 2 3

u(t ) t0

~s.t. z 5 z1 2

~z 5 2z u 1 16t 2 32 3
(36)

~z 5 u3

]Îz 5 [0, 21, 2 5] t [ [0, 1]0

24 < u(t) < 10

Reformulating the problem into the form given by (5) and parameterizing the
control using a piecewise constant profile, results in:

min x
v,x

~s.t. z 5 z1 2

~z 5 2z u 1 16t 2 82 3

~z 5 u3

2 2 2 2~z 5 z 1 z 1 0.0005(z 1 16t 2 8 2 0.1z u ) (37)4 1 2 2 3

ˆ ˆu 2 v 5 0 t < t , ti i i11

2x 1 z (t ) < 04 f

]Îz 5 [0, 21, 2 5, 0] t [ [0, 1]0

24 < v < 10

For this example, different numbers of equal sized control intervals were tested.
Table 8 shows the local solutions for each number of intervals. In each case, two
local solutions exist.

Tests were run for each number of control intervals to determine the minimum
value of b needed to generate a relaxed problem with only one solution. Also, 1000
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Table 8. Local solutions for the singular control problem using different numbers of control
intervals

[ of intervals Global sol. Frequency Local sol. Frequency

2 0.27711 38% 0.35175 58%
4 0.12374 70% 0.14252 30%

10 0.12012 98% 0.13569 2%

points were used to sample the space to determine a value of b needed for
convexity. These results are shown in Table 9. Notice how much smaller the b
value needed to produce a lower problem with one solution is compared to the value
needed for convexity. The convexity condition imposed on the relaxed problem
which leads to convergence to the global solution can be relaxed to pseudo-
convexity. Therefore, values of b less than that required for convexity can be used.
In each case, the value needed for convexity is over 5 times the value needed for
one solution.

The two interval case was solved using all three methods for generating b
variables. These results are shown in Table 10. The first branching method was used
without updating any variable bounds at each iteration. A relative tolerance of 0.1%
was used for convergence and for the sampling methods, 100 points were used
initially and then at least 20 points at each other iteration. The value of b used for
the constant run was that which was found to ensure convexity of the lower problem
(0.03719). For the interval calculations, the Gerschgorin method was used when one
b was determined, and the scaled Gerschgorin method was used to calculate one b
per variable.

Table 9. b values needed for convexity and for a single solution for the singular control problem
with different numbers of control intervals

[ of intervals b (one solution) b (convexity) Ratio

2 0.006510 0.03719 5.7
4 0.003545 0.02084 5.9

10 0.001525 0.00812 5.3

Table 10. Global solution results for the singular control example with 2 control intervals using
different methods to calculate the b values

b Calculation method Iterations Total CPU sec. Integration CPU sec.

Constant 21 8.71 –
Sampled 12 15.55 9.41
Sampled/ interval (one b ) 60 70.57 39.17

1Sampled/ interval (b per variable) 55 66.52 36.63
2Sampled/ interval (b per variable) 41 47.04 27.14

1 Scaled Gerschgorin with scale factor of 1.
2 U LScaled Gerschgorin with scale factor of v 2 v .i i
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Table 11. Global solution results for the singular control example with 2 control intervals using
different methods to calculate the b values with bounds updating on both control parameters at
each iteration

b Calculation method Iterations Total CPU sec. Integration CPU sec.

Constant 12 25.14 –
Sampled 8 23.43 9.30
Sampled/ interval (one b ) 48 109.81 37.02

1Sampled/ interval (b per variable) 44 109.54 34.43
2Sampled/ interval (b per variable) 33 71.94 25.66

1 Used scaled Gerschgorin with scale factor of 1.
2 U LUsed scaled Gerschgorin with scale factor of v 2 v .i i

For this example, due to the small size of the problem, it is better to use a
constant value for b. The extra time required to perform the integrations to
determine updated b’s results in only a small reduction in the number of iterations.
The interval approaches take more than 4 times the standard sampling method
(without interval calculations). The interval methods are known to overestimate the
required b value. The b value determined using interval calculations with the
Gerschgorin method and sampling 100 points is 2.95. This is nearly 2 orders of
magnitude larger than that which is necessary for convexity, thus the slower rate of
convergence. As another exercise, the same conditions were used with bounds
updating on both of the control parameters at each iteration using the objective
function constraint. The results are shown in Table 11. The updating does result in a
reduction in the number of required iterations to reach convergence, but not enough
to offset the additional computational effort.

Using four control intervals, semi-constant b values given by Equation (19) were
used. A relative convergence tolerance of 1% and the first branching option were
selected. No bounds were updated at each iteration. Table 12 shows the results
obtained by varying the n parameter in the expression. In each case, b was set to0

the value determined to be needed for convexity of the original lower bounding
problem (0.0208). The results, as expected, show for that a greater value of n results

Table 12. Results using different n parameters in the
calculation of b values for the singular control example
with four control intervals

n Iterations CPU sec.

1 21 28.81
3 111 120.05
5 221 210.28

10 460 397.16
15 644 556.25
20 782 627.53
constant 1608 1304.39
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in slower convergence. Even with a value of n 5 1 convergence to the global
solution is reached, in fact, in each case the global solution is identified at the root
node of the tree. The rest of the iterations are used to prove global optimality. The
problem was also solved using the sampling approach with 100 initial points and at
least 20 points at each other iteration. This required 187 iterations and 619.67 CPU
sec. to achieve convergence. The integrations to calculation the b values required
443.48 CPU seconds.

Using ten control intervals, the problem was solved again with the semi-constant
b values with b 5 0.00812 (the value needed for convexity of the original lower0

bounding problem) and n 5 2. The solutions were obtained using each of the two
branching methods with and without bounds updating. The bounds updating
problems included the objective function constraint, and a relative convergence
tolerance of 1% was used. These results are shown in Table 13. The second
branching option offers slightly faster convergence to the global solution. Bounds
updating reduces the number of iterations required (by nearly one half), but more
than doubles the computational effort. The global solution was identified at the root
node of the tree in each case.

4.4. BIFUNCTIONAL CATALYST EXAMPLE

This example concerns the optimization of a bifunctional catalyst in converting
methylcyclopentane to benzene. The catalyst contains a hydrogenation component
and an isomerization component. The objective is to determine the mixture of the
two along the length of the reactor which maximizes the concentration of the desired
product, A , in the reaction scheme given in Figure 4. This problem was studied by7

Luus et al. (1992), Bojokov and Luus (1993), and Luus and Bojkov (1994). The
formulation for this problem using a piecewise constant control profile is:

min 2x
v,x

~s.t. z 5 2k z1 1 1

~z 5 k z 2 (k 1 k )z 1 k z2 1 1 2 3 2 4 5

~z 5 k z3 2 2

~z 5 2k z 1 k z4 6 4 5 5

Table 13. Results using different branching with and without bounds updating for the singular
control example with ten control intervals

Branch method Bounds updating Iterations CPU sec.

1 no 1310 4,509
2 no 1076 3,625
1 yes 585 11,598
2 yes 570 11,391
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Figure 4. Reaction system of the bifunctional catalyst example.

~z 5 k z 1 k z 2 (k 1 k 1 k 1 k )z 1 k z 1 k z5 3 2 6 4 4 5 8 9 5 7 6 10 7

~z 5 k z 2 k z6 8 5 7 6
(38)

~z 5 k z 2 k z7 9 5 10 7

2 3k 5 (c 1 c u 1 c u 1 c u )v j 5 1, . . . , 10j j,1 j,2 j,3 j,4 r

ˆ ˆu 2 v 5 0 t < t , ti i i11

x 2 z (t ) < 07 f

z 5 [1, 0, 0, 0, 0, 0, 0] t [ [0, 1]0

t̂ 5 [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

0.60 < v < 0.90

where v is the total catalyst volume (2000 g h/mol), and the c matrix of constantsr

for the reaction expressions is defined by:

22 22 22 220.2918487 3 10 20.8045787 3 10 0.6749947 3 10 20.1416647 3 10
1 2 2 20.9509977 3 10 20.3500994 3 10 0.4283329 3 10 20.1733333 3 10 
2 2 3 20.2682093 3 10 20.9556079 3 10 0.1130398 3 10 20.4429997 3 10
3 3 3 3 0.2087241 3 10 20.7198052 3 10 0.8277466 3 10 20.3166655 3 10
1 1 2 10.1350005 3 10 20.6850027 3 10 0.1216671 3 10 20.6666689 3 10c 5
21 21 210.1921995 3 10 20.7945320 3 10 0.1105666 20.5033333 3 10 0.1323596 20.4696255 0.5539323 20.2166664
1 2 2 2 0.7339981 3 10 20.2527328 3 10 0.2993329 3 10 20.1199999 3 10

1 1
20.3950534 0.1679353 3 10 20.1777829 3 10 0.4974987

24 21 21 22 20.2504665 3 10 0.1005854 3 10 20.1986696 3 10 0.9833470 3 10

Even though this example is relatively small (7 states and 1 control), it has been
shown to exhibit a very large number of local minima. In fact over 300 unique local
minima have been identified. Using 1000 random starting points, the global solution
was only identified once. Figure 5 gives an idea of just how many local solutions
this problem has.

Using 1000 sampled points, the value of b needed to ensure convexity of the
initial lower bounding problem was determined to be 0.0698. The problem was
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Figure 5. Local solutions and number of times found using 1000 random starting points for
the bifunctional catalyst example.

solved using this value in expression (19) as b with different values for n and0

different branching options. A relative convergence tolerance of 0.1% was used and
no bounds updating was performed. The results are shown in Table 14. The global

Table 14. Results using different branching and values of the n parameter in the b expression for
the bifunctional catalyst example. Failed shows that the algorithm converged to the local solution
given in parentheses in the given number of iterations

n Branching Iters. CPU sec. Global solution identified
232 1 failed (9.4975 3 10 in 41 iters)

232 2 failed (10.0395 3 10 in 63 iters)

3 1 220 2,985 iter. 67
233 2 failed (9.852 3 10 in 96 iters)

4 1 412 4,778 iter. 93
234 2 failed (10.042 3 10 in 181 iters)

5 1 620 6,341 iter. 169
5 2 373 5,675 iter. 268

6 1 820 8,517 iter. 68
6 2 653 7,691 iter. 329
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Figure 6. Globally optimal control profile for the bifunctional catalyst example.

23solution obtained has an objective value of 10.095 3 10 with a control profile
given in Figure 6. The results show some interesting trends. The second branching
option allows for faster convergence, but fails more with lower n values and take
more iterations to identify the global solution. This method of branching when one b
value is used, results in an ordered selection of branching variables. At each level of
the tree the same variable is branched on in each node, starting with v at the first1

level. Due to the structure of the optimal and local solutions, this results in quicker
convergence, but a longer time to identify the global solution. Therefore, when a b
value which is too small is used, convergence to a local solution is obtained. With
the first branching method, the variable which has the most fractional solution (i.e.,
closest to the center of the region) is selected. This changes at each node of the tree
and results in a more thorough search of the solution space. Therefore, the global
solution is identified quicker and convergence is obtained even when invalid b
values are used.

This example illustrates an interesting characteristic of the approach. The
algorithm acts as a very effective search to determine the global solution. Initial
points for the solution of the original problem are determined by solving a convex
relaxation. This relaxation acts to smooth the nonconvex nature of the original
formulation, thus supplying starting points which are relatively close to the global
solution. Consider in this problem that using 1000 randomly chosen starting points
only results in the global solution being identified once. Using the first branching
method, the global solution was identified in at most 169 iterations and more often
less than 100 iterations. Each iteration produces two different starting points for the
solution of the upper problem. Therefore, it took no more than 200 points (on
average) to find the global solution. This is 5 times better than simply choosing
random points. This characteristic is also apparent in the other example problems. In
each of those, even though multiple local minima exist, the global solution was
always identified at the root node of the branch and bound tree.



124 W.R. ESPOSITO AND C.A. FLOUDAS

5. Conclusions

In this paper a deterministic global optimization approach has been presented to
address nonlinear optimal control problems. The proposed method is constructed on
a branch-and-bound framework in which he solution of a convex relaxation is
solved to generate a valid lower bound on the global solution. The novelty in this
approach is in the generation of a valid convex underestimation of the original
nonconvex formulation. The values of the states at given time points are treated as
twice continuously differentiable implicit functions of the algebraic variables in the
formulation. This allows for the development of an underestimating function using
information about the second-order sensitivities of these states with respect to the
control parameters. The theoretical conditions which make this assumption valid are
presented an an example to illustrate the procedure is discussed. Four different
optimal control problems which have been shown to exhibit multiple local minima
were used to illustrate the theoretical and computational aspects of the proposed
approach.
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